AG Technau Publikationen

Hessinger C, Technau GM, Rogulja-Ortmann A (2017).
The Drosophila Hox gene Ultrabithorax acts in both muscles and motoneurons to orchestrate formation of specific neuromuscular connections.
Development. 2017 Jan 1;144(1):139-150. doi: 10.1242/dev.143875.

Urbach R, Jussen D, Technau GM (2016).
Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila.
Development. 2016 Apr 15;143(8):1290-301. doi: 10.1242/dev.133546.

Becker H, Renner S, Technau GM, Berger C (2016).
Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.
PLoS Genet 12(3):e1005961. doi:10.1371/journal.pgen.1005961

Birkholz O, Rickert C, Nowak J, Coban IC, Technau GM (2015).
Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster.
Biol Open 4, 420-434

Technau GM, Rogulja-Ortmann A, Berger C, Birkholz O and Rickert C (2014).
Composition of a neuromere and its segmental diversification under the control of Hox genes in the embryonic CNS of Drosophila.
J. Neurogenetics 28, 171-180.

Rogulja-Ortmann A*, Picao-Osorio J*, Villava C*, Patraquim P, Lafuente E, Aspden J, Thomsen S, Technau GM and Alonso CR (2014).
The RNA binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system.
Development 141, 2046-2056.

Bikholz O, Vef O, Rogulja-Ortmmann A, Berger C and Technau GM (2013).
Abdominal-B and caudal inhibbit the formation of specific neuroblasts in the Drosophila tail region.
Development 140, 3552 - 3564.

von Hilchen, C, Bustos, A, Giangrande A, Technau GM, Altenhein, B (2013).
Predetermined embrynic glial cells form the distinct glial sheaths of the Drosophila nervous system.
Development 140, 3657 - 3668.

Birkholz O, Rickert C, Berger C, Urbach R, Technau GM. (2013).
Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors.
Development 140(8):1830-42.

Rickert C, Kunz T, Harris KL, Whitington P, Technau G. (2013).
Labeling of single cells in the central nervous system of Drosophila melanogaster.
J Vis Exp. (73), e50150, doi:10.3791/50150

Kunz T, Kraft KF, Technau GM, Urbach R. (2012)
Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages.
Development 139(14):2510-22.

Rickert C, Kunz T, Harris K-L, Whitington PM and Technau GM (2011).
Morphological characterisation of the entire interneuron population reveals principles of neuromere organisation in the ventral nerve cord of Drosophila.
J Neurosci. 31, 15870-15883.

Ruiz S, Rickert C, Berger C, Technau GM and Cantera R (2010).
Spatio‐temporal pattern of cells expressing the clock genes period and timeless and the lineages of period expressing neurons in the embryonic CNS of Drosophila melanogaster.
Gene Expression Patterns 10, 274-282.

Kannan R, Berger C, Myneni S, Technau GM and Shashidhara LS (2010).
Abdominal-A mediated repression of Cyclin E expression during cell-fate specification in the Drosophila central nervous system.
Mech. Dev. 127, 137-145.

Berger C, Kannan R, Myneni S, Renner S, Shashidhara LS and Technau GM (2010).
Cell cycle independent role of Cyclin E during neural cell fate specification in Drosophila is mediated by its regulation of Prospero function.
Dev Biol 337, 415-424.

von Hilchen C, Hein I, Technau GM and Altenhein B (2010).
Netrins guide migration of distinct glial cells in the Drosophila embryo.
Development 137, 1251-1262.

Lüer K and Technau GM (2009).
Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy.
Neural Development 4:30, 1-16.

Udolph G, Rath P, Tio M, Toh J, Fang W, Pandey R, Technau GM and Chia W (2009).
On the roles of Notch, Delta, kuzbanian, and inscuteable during the development of Drosophila embryonic neuroblast lineages.
Dev Biol 336, 156-168.

von Hilchen C, Beckervordersandforth R, Rickert C, Technau GM and Altenhein B. (2008).
Identity, origin and migration of peripheral glial cells in the Drosophila embryo.
Mech. Dev. 125/3-4, 337-352.

Beckervordersandforth R, Rickert C, Altenhein B and Technau GM (2008).
Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression.
Mech. Dev. 125/5-6, 542-557.

Technau GM (Ed., 2008).
Brain development in Drosophila melanogaster.
(Advances in experimental medicine and biology; Vol. 628). Springer/Landes Bioscience.

Urbach R and Technau GM (2008).
Dorsoventral patterning of the brain – a comparative approach.
In: Technau GM (Ed.), Brain Development in Drosophila melanogaster. Springer/Landes Bioscience, pp. 42-56.

Rogulja-Ortmann A, Renner S and Technau GM (2008).
Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system.
Development 135, 3435-3445.

Rogulja-Ortmann A and Technau GM (2008).
Multiple roles for Hox genes in segment-specific shaping of CNS lineages.
Fly 2:6, 316-319.

Edenfeld G*, Altenhein B*, Zierau A, Cleppien D, Krukkert K, Technau GM and Klämbt C (2007).
Notch and Numb are required for normal migration of peripheral glia in Drosophila.
Dev Biol 301, 27-37.

Rogulja-Ortmann A, Lüer K, Seibert J, Rickert C and Technau GM (2007).
Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development 134, 105-116.

Hülsmeier J, Pielage J, Rickert C, Technau GM, Klämbt C and Stork T (2007).
Distinct functions of a-Spectrin and b-Spectrin during axonal pathfinding.
Development 134, 713-722.

Altenhein B und Technau GM (2007).
Entwicklung embryonaler Gliazellen in Drosophila.
Biospektrum 05.07: 484-488.

Berger C, Renner S, Lüer K and Technau GM (2007).
The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in the Drosophila embryonic CNS.
Dev. Dyn. 236, 3562-3568.

Urbach R and Technau GM (2007).
Segmental organization of cephalic ganglia in arthropods.
In: Kaas, J.H. (Ed.), Evolution of Nervous Systems. Vol. I. Academic Press, Oxford, pp. 337-348.

Sprecher SG, Urbach R, Technau GM, Rijli FM, Reichert H and Hirth F (2006).
The columnar gene vnd is required for tritocerebral neuromere formation during embryonic brain development of Drosophila.
Development 133(21), 4331-4339.

Urbach R, Volland D, Seibert J and Technau GM (2006).
Segment-specific requirements for dorsoventral patterning genes during early brain development in Drosophila.
Development 133(21), 4315-30

Altenhein B*, Becker A*, Busold C, Beckmann B, Hoheisel JD and Technau GM (2006).
Expression profiling of glial genes during Drosophila embryogenesis.
Dev Biol 296, 545-560

Vef O, Cleppien D, Löffler T, Altenhein B and Technau GM (2006)
A new strategy for efficient in vivo screening of mutagenized Drosophila embryos.
Dev Genes Evol 216(2),105-108

Technau GM, Berger C and Urbach R (2006).
Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila.
Dev Dyn. 235(4), 861-869.

Berger C, Pallavi SK, Prasad M, Shashidhara LS and Technau GM (2005).
A critical role for Cyclin E in cell fate determination in the central nervous system of Drosophila.
Nature Cell Biology 7, 56-62.

Berger C, Pallavi SK, Prasad M, Shashidhara LS and Technau GM (2005).
CyclinE acts under the control of Hox-genes as a cell-fate determinant in the developing central nervous system.
Cell Cycle 4 (3), 18-21.

Gendre N, Lüer K, Friche S, Grillenzoni N, Ramaekers A, Technau GM and Stocker R (2004).
Integration of complex larval chemosensory organs into the adult nervous system of Drosophila.
Development 131, 83-92

Küppers-Munther B, Letzkus J, Lüer K, Technau GM, Schmidt H and Prokop A (2004).
A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses.
Dev. Biol. 269, 459-478

Urbach R and Technau GM (2004).
Neuroblast formation and patterning during early brain development in Drosophila.
BioEssays 26, 739-751

Soustelle L, Jacques C, Altenhein B, Technau GM, Volk T and Giangrande A (2004).
Terminal tendon cell differentiation requires the glide/gcm complex.
Development 131, 4521-4532

Küppers B, Sánchez-Soriano N, Letzkus J, Technau GM and Prokop A (2003).
In developing Drosophila neurons the production of [[gamma]]-amino butyric acid is tightly regulated downstream of glutamate decarboxylase translation and can be influencd by calcium.
J. Nuerochem. 84, 939-951

Weigmann K, Klapper R, Strasser T, Rickert C, Technau GM, Jäckle H, Janning W and Klämbt, C (2003).
FlyMove – a new way to look at development of Drosophila.
Trends Genet. 19, 310-311

Landgraf M, Sánchez-Soriano N, Technau GM, Urban J, and Prokop A (2003).
Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites.
Dev. Biol., 260, 207-225

Urbach R, Schnabel R and Technau GM (2003).
The pattern of neuroblast formation, mitotic domains, and proneural gene expression during early brain development in Drosophila.
Development 130, 3589-3606

Urbach R and Technau GM (2003).
Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain.
Development 130, 3607-3620

Urbach R and Technau GM (2003).
Molecular markers for identified neuroblasts in the developing brain of Drosophila.
Development 130, 3621-3637

Urbach R and Technau GM (2003).
Early steps in building the insect brain: Neuroblast formation and segmental patterning in the developing brain of different insect species.
Arthropod Structure & Development 32, 103-123

Urbach F, Technau GM, and Breidbach O (2003).
Spatial and temporal pattern of neuroblasts, proliferation, and Engrailed expression during early brain development in Tenebrio molitor L. (Coleoptera).
Arthropod Structure & Development 32, 125-140

Keleman K, Rajagopalan S, Cleppien D, Teis D, Paiha K, Huber LA, Technau GM and Dickson BJ (2002).
Comm sorts Robo to control axon guidance at the Drosophila midline.
Cell 110, 415-427

Cantera R, Lüer K, Rusten TE, Barrio R, Kafatos FC and Technau GM (2002).
Mutations in spalt cause a severe but reversible neurodegenerative phenotype in the embryonic central nervous system of Drosophila melanogaster.
Development 129, 5577-5586

Rusten TE, Cantera R, Urban J, Technau GM, Kafatos FC and Barrio R (2001).
Spalt modifies EGFR-mediated induction of chordotonal precursors in the embryonic PNS of Drosophila promoting the development of oenocytes.
Development 128, 711-722

Deshpande N, Dittrich R, Technau GM and Urban J (2001).
Successive specification of Drosophila neuroblasts NB6-4 and NB7-3 depends on interaction of the segment polarity genes wingless, gooseberry and naked cuticle.
Development 128, 3253-3261

Berger C, Urban J and Technau GM (2001).
Stage-specific inductive signals in the Drosophila neuroectoderm control the temporal sequence of neuroblast specification.
Development 128, 3243-3251

Schmidt H, Lüer K., Hevers W. and Technau GM (2000).
Ionic currents of Drosophila embryonic neurons derived from selectively cultured CNS midline precursors.
J. Neurobiol. 44, 392-413

Udolph G, Urban J, Rüsing G, Lüer K and Technau GM (1998).
Differential effects of EGF receptor signalling on neuroblast lineages along the dorsoventral axis of the Drosophila CNS.
Development 125, 3291-3300

Prokop A, Bray S, Harrison E and Technau GM (1998).
Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system.
Mech. Dev. 74, 99-110

Dittrich R, Bossing T, Gould AP, Technau GM and Urban J (1997).
The differentiation of the serotonin neurons in the Drosophila ventral nerve cord depends on the combined function of the zink finger proteins Eagle and Huckebein.
Development 124, 2515-2525

Lüer K, Urban J., Klämbt C and Technau GM (1997).
Induction of identified mesodermal cells by CNS midline progenitors in Drosophila.
Development 124, 2681-2690.

Schmidt H, Rickert C, Bossing T, Vef O, Urban J and Technau GM (1997).
The embryonic central nervous system lineages of Drosophila melanogaster.
II. Neuroblast lineages derived from the dorsal part of the neuroectoderm.
Devl Biol 189, 186-204

Landgraf M, Bossing T, Technau GM and Bate M (1997).
The origin, location and projections of the embryonic abdominal motoneurons of Drosophila.
J Neurosci 17, 9642-9655

Menne T, Lüer K, Technau GM and Klämbt C (1997).
CNS midline cells in Drosophila induce the differentiation of lateral neural cells.
Development 124, 4949-4958

Urban J and Technau GM (1997).
Cell lineage and cell fate specification in the embryonic CNS of Drosophila.
Seminars in Cell & Devl Biol 8, 391-400

Bossing T, Technau GM and Doe CQ (1996).
huckebein is required for glial development and axon pathfinding in the NB 1-1 and NB 2-2 lineages in the Drosophila CNS.
Mech. Dev. 55, 53-64

Bossing T, Udolph G, Doe CQ and Technau GM (1996).
The embryonic CNS lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm.
Devl Biol 179, 41-61

Cantera R and Technau GM (1996).
Glial cells phagocytose neuronal debris during the metamorphosis of the central nervous system in Drosophila melanogaster.
Dev Genes Evol 206, 277-280

Technau, GM (1996).
On lineage analysis and specification of cell fate in the embryonic CNS of Drosophila.
In: Generation of Neuronal Diversity and Specificity in the Brain.
Taniguchi Int. Symposium, Division of Biophysics. pp. 22-26

Halter D, Urban J, Rickert C, Ner S, Ito K, Travers A and Technau GM (1995).
The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster.
Development 121, 317-332

Ito K, Urban J and Technau GM (1995).
Distribution, classification and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord.
Roux's Arch Dev Biol 204, 284-307

Schmidt-Ott U, Gonzáles-Gaitán M and Technau GM (1995).
Analysis of neural elements in head-mutant Drosophila embryos suggest segmental origin of the optic lobes.
Roux´s Arch Dev Biol 205, 31-44

Udolph G, Lüer K, Bossing T and Technau GM (1995).
Commitment of CNS progenitors along the dorsoventral axis of the Drosophila neuroectoderm.
Science 269, 1278-1281

Broadus J, Skeath JB, Spana EP, Bossing T, Technau GM and Doe CQ (1995).
New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system.
Mech. Dev. 53, 393-402

Urban J. and Technau GM (1995).
Enstehung von Zelldiversität im ZNS von Drosophila.
Neuroforum 2, 8-16

Prokop A and Technau GM (1994).
Normal function of the mushroom body defect gene of Drosophila is required for the regulation of the number and proliferation of neuroblasts.
Devl Biol 161, 321-337

Schmidt-Ott U, Sander K and Technau GM (1994).
Expression of engrailed in embryos of a beetle and five dipteran species with special reference to the terminal regions.
Roux's Arch Dev Biol 203, 298-303

Schmidt-Ott U and Technau GM (1994).
Fate-mapping in the procephalic region of the embryonic Drosophila head.
Roux's Arch Dev Biol 203, 367-373

Bossing T and Technau GM (1994).
The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling.
Development 120, 1895-1906

Prokop A and Technau GM (1994).
Early tagma-specific commitment of Drosophila CNS progenitor NB1-1.
Development 120, 2567-2578

Prokop A and Technau GM (1994).
BrdU incorporation reveals DNA replication of non dividing glial cells in the larval abdominal CNS of Drosophila.
Roux's Arch Dev Biol 204, 54-61

Schmidt-Ott U, Gonzalez-Gaitan M, Jäckle H and Technau GM (1994).
Number, identity and sequence of the Drosophila head segments as revealed by neural elements and their deletion patterns in mutants.
Proc Natl Acad Sci 91, 8363-8367

Udolph G, Prokop A, Bossing T and Technau GM (1993).
A common precursor for glia and neurons in the embryonic CNS of Drosophila gives rise to segment-specific lineage variants.
Development 118, 765-775

Prokop A and Technau GM (1993).
Cell transplantation.
In: Cellular Interactions in Development. A Practical Approach (ed. DA Hartley), pp 33-57

Doe CQ and Technau GM (1993).
Identification and cell lineage of individual neural precursors in the Drosophila CNS.
Trends Neurosci 16 (No.12), 510-514

Technau GM (1992): Experimentelle Ansätze zum Studium der Entwicklung des Zentralnervensystems von Drosophila.
Verh. Dtsch. Zool. Ges. 85.2, 111-131

Schmidt-Ott U and Technau GM (1992).
Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants.
Development 116, 111-125

Lüer K and Technau GM (1992).
Primary culture of single ectodermal precursors of Drosophila reveals a dorsoventral prepattern of intrinsic neurogenic and epidermogenic capabilities at the early gastrula stage.
Development 116, 377-385

Prokop A and Technau GM (1991).
The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 111, 79-88

Fischbach KF und Technau GM (1991):
Ein tiefer Blick ins Auge der Drosophila. forschung, Mitteilungen der DFG 3, 21-23

Becker T and Technau GM (1990).
Single cell transplantation reveals interspecific cell communication in Drosophila chimeras. Development 109, 821-832

Boschert U, Ramos RGP, Tix S, Technau GM and Fischbach KF (1990).
Genetic and developmental analysis of irreC, a genetic function required for optic chiasm formation in Drosophila.
J Neurogenetics 6, 153-171

Tix S, Bate M and Technau GM (1989).
Pre-existing neuronal pathways in the leg imaginal discs of Drosophila.
Development 107, 855-862

Tix S, Minden JS and Technau GM (1989).
Pre-existing neuronal pathways in the developing optic lobes of Drosophila.
Development 105, 739-746

Campos-Ortega JA, Knust E and Technau GM: Mechanisms of a cellular decision: epidermogenesis or neurogenesis in Drosophila melanogaster.
In: Dynamics and plasticity in neuronal systems (N. Elsner and W. Singer, eds.), 61-72 (1989)

Technau GM, Becker T and Campos-Ortega JA (1988).
Reversible commitment of neural and epidermal progenitor cells during embryogenesis of Drosophila melanogaster.
Roux's Arch Dev Biol 197, 413-418

Technau GM (1987).
A single cell approach to problems of cell lineage and commitment during embryogenesis of Drosophila melanogaster.
Development 100, 1-12

Balling A, Technau GM and Heisenberg M (1987).
Are the structural changes in adult Drosophila melanogaster mushroom bodies memory traces? Studies on biochemical learning mutants.
J. Neurogenetics 4, 65-74

Beer J, Technau GM and Campos-Ortega JA (1987).
Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster. IV. Commitment and proliferative capabilities of mesodermal cells.
Roux's Arch Dev Biol 196, 222-230

Technau GM and Campos-Ortega JA (1987).
Cell autonomy of expression of neurogenic genes of Drosophila melanogaster.
Proc Natl Acad Sci 84, 4500-4504

Campos-Ortega JA, Bremer KA, De La Concha A, Dietrich U, Knust E, Technau GM, Tietze K, Vässin H und Ziemer A. (1987)
Genetische Analyse der frühen Neurogenese bei Drosophila melanogaster.
Verh Dtsch Zool Ges 80, 9-22

Technau GM (1986).
Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster. I. The method.
Roux's Arch Dev Biol 195, 389-398

Technau GM and Campos-Ortega JA (1986).
Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster. II. Commitment and proliferative capabilities of neural and epidermal cell progenitors.
Roux's Arch Dev Biol 195, 445-454

Technau GM and Campos-Ortega JA (1986).
Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster. III. Commitment and proliferative capabilities of pole cells and midgut progenitors.
Roux's Arch Dev Biol 195, 489-498

Hartenstein V, Technau GM and Campos-Ortega JA (1985).
Fate mapping in wild-type Drosophila melanogaster. III: A fate map of the blastoderm.
Roux's Arch Dev Biol 194, 213-216

Technau GM and Campos-Ortega JA (1985).
Fate-mapping in wild-type Drosophila melanogaster. II. Injections of horseradish peroxidase in cells of the early gastrula stage.
Roux's Arch Dev Biol 194, 196-212

Technau GM (1984).
Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience.
J Neurogenetics 1, 113-126

Fischbach KF and Technau GM (1984).
Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster.
Devl Biol 104, 219-239

Technau GM and Heisenberg M (1982).
Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster.
Nature 95, 405-407